AI & ML Components
Overview
JobHive’s AI system is the core differentiator that transforms traditional interviews into intelligent, data-driven assessments. The platform uses a sophisticated multi-agent architecture that analyzes interviews across multiple dimensions in real-time, providing unprecedented insights into candidate capabilities and fit.AI Architecture
Multi-Agent System Design
Copy
┌─────────────────────────────────────────────────────────────┐
│ Orchestrator Agent │
│ (Coordinates all AI processes) │
└─────────────────┬───────────────────────────────────────────┘
│
┌─────────────┼─────────────┐
│ │ │
▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│Sentiment│ │ Skill │ │Cultural │ │Body Lang│ │Worker │
│Analysis │ │Assessment│ │Fit │ │Analysis │ │Agent │
│Agent │ │Agent │ │Agent │ │Agent │ │ │
└─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘
Core AI Components
1. Orchestrator Agent
Purpose: Coordinates all AI processing and manages the interview analysis pipeline. Key Responsibilities:- Workflow Management: Orchestrates the sequence of AI analyses
- Data Distribution: Routes interview data to appropriate specialized agents
- Result Aggregation: Combines insights from all agents into comprehensive reports
- Quality Control: Validates AI outputs and ensures consistent scoring
- Performance Monitoring: Tracks AI system performance and accuracy
Copy
class OrchestratorAgent:
def __init__(self):
self.sentiment_agent = EnhancedSentimentAgent()
self.skill_agent = SkillAssessmentAgent()
self.cultural_agent = CulturalFitAgent()
self.worker_agent = WorkerAgent()
async def process_interview(self, interview_session):
"""Process complete interview through AI pipeline."""
# Start parallel processing
tasks = [
self.sentiment_agent.analyze_session(interview_session),
self.skill_agent.assess_skills(interview_session),
self.cultural_agent.evaluate_fit(interview_session)
]
# Wait for all analyses to complete
results = await asyncio.gather(*tasks)
# Aggregate and validate results
final_score = self.calculate_weighted_score(results)
recommendations = self.generate_recommendations(results)
return {
'overall_score': final_score,
'detailed_analysis': results,
'recommendations': recommendations
}
Sentiment Analysis System
Enhanced Sentiment Agent
Advanced Multi-Dimensional Analysis:Core Sentiment Detection
Copy
class EnhancedSentimentAgent:
def __init__(self):
self.base_analyzer = pipeline("sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest")
self.emotion_analyzer = pipeline("text-classification",
model="j-hartmann/emotion-english-distilroberta-base")
self.context_analyzer = ContextualAnalyzer()
def analyze_sentiment_with_context(self, text, context_factors):
# Base sentiment analysis
base_sentiment = self.base_analyzer(text)
# Emotional intelligence analysis
emotions = self.emotion_analyzer(text)
# Context-aware enhancement
context_scores = self.analyze_context_factors(text, context_factors)
# Weighted combination for final score
enhanced_sentiment = self.calculate_enhanced_score(
base_sentiment, emotions, context_scores
)
return enhanced_sentiment
Context Factors Analysis
Analyzes responses beyond basic sentiment:Copy
class ContextualAnalyzer:
def analyze_context_factors(self, text, job_context):
return {
'value_alignment': self.assess_value_alignment(text, job_context.company_values),
'requirement_addressing': self.check_requirement_coverage(text, job_context.requirements),
'response_relevance': self.calculate_relevance_score(text, job_context.question),
'confidence_indicators': self.detect_confidence_markers(text),
'enthusiasm_level': self.measure_enthusiasm(text),
'authenticity_score': self.assess_authenticity(text)
}
def assess_value_alignment(self, text, company_values):
"""Measures alignment with company values."""
alignment_indicators = {
'innovation': ['creative', 'innovative', 'new approach', 'problem-solving'],
'collaboration': ['team', 'together', 'collective', 'partnership'],
'integrity': ['honest', 'transparent', 'ethical', 'responsibility'],
'excellence': ['quality', 'best', 'exceed', 'outstanding']
}
scores = {}
for value, indicators in alignment_indicators.items():
score = sum(1 for indicator in indicators if indicator in text.lower())
scores[value] = min(score / len(indicators), 1.0)
return scores
Real-Time Sentiment Tracking
Copy
class RealTimeSentimentTracker:
def __init__(self, websocket_connection):
self.connection = websocket_connection
self.sentiment_history = []
async def track_live_sentiment(self, audio_stream):
"""Process live audio for real-time sentiment analysis."""
async for audio_chunk in audio_stream:
# Convert audio to text
text = await self.transcribe_audio(audio_chunk)
# Analyze sentiment
sentiment = self.sentiment_agent.analyze(text)
# Track sentiment over time
self.sentiment_history.append({
'timestamp': datetime.now(),
'sentiment': sentiment,
'text': text
})
# Send real-time updates
await self.connection.send_json({
'type': 'sentiment_update',
'data': sentiment
})
Skill Assessment Engine
Dynamic Skill Framework
Adapts to job-specific requirements:Copy
class SkillAssessmentAgent:
def __init__(self):
self.skill_extractors = {
'technical': TechnicalSkillExtractor(),
'communication': CommunicationSkillExtractor(),
'leadership': LeadershipSkillExtractor(),
'problem_solving': ProblemSolvingExtractor()
}
async def assess_skills(self, interview_session):
"""Comprehensive skill assessment."""
job_requirements = interview_session.job.requirements
transcript = interview_session.get_transcript()
# Extract job-specific skills
required_skills = self.parse_job_requirements(job_requirements)
# Assess each skill category
skill_scores = {}
for category, extractor in self.skill_extractors.items():
scores = await extractor.extract_and_score(
transcript, required_skills
)
skill_scores[category] = scores
# Calculate weighted overall score
overall_score = self.calculate_weighted_skill_score(
skill_scores, required_skills
)
return {
'overall_score': overall_score,
'skill_breakdown': skill_scores,
'improvement_areas': self.identify_gaps(skill_scores, required_skills)
}
Technical Skill Evaluation
Copy
class TechnicalSkillExtractor:
def __init__(self):
self.skill_patterns = {
'programming_languages': {
'python': ['python', 'django', 'flask', 'pandas', 'numpy'],
'javascript': ['javascript', 'js', 'node', 'react', 'vue', 'angular'],
'java': ['java', 'spring', 'maven', 'gradle'],
'sql': ['sql', 'database', 'query', 'select', 'join']
},
'frameworks': {
'web_frameworks': ['django', 'flask', 'express', 'spring boot'],
'frontend_frameworks': ['react', 'angular', 'vue', 'svelte'],
'mobile_frameworks': ['react native', 'flutter', 'ionic']
},
'concepts': {
'algorithms': ['algorithm', 'complexity', 'big o', 'optimization'],
'design_patterns': ['singleton', 'factory', 'observer', 'mvc'],
'architecture': ['microservices', 'rest', 'api', 'scalability']
}
}
async def extract_and_score(self, transcript, required_skills):
"""Extract and score technical skills from transcript."""
skill_mentions = self.identify_skill_mentions(transcript)
depth_analysis = self.analyze_skill_depth(transcript, skill_mentions)
practical_experience = self.assess_practical_experience(transcript)
scores = {}
for skill in required_skills:
base_score = self.calculate_base_score(skill, skill_mentions)
depth_bonus = depth_analysis.get(skill, 0)
experience_bonus = practical_experience.get(skill, 0)
final_score = min(base_score + depth_bonus + experience_bonus, 10.0)
scores[skill] = final_score
return scores
Communication Skills Analysis
Copy
class CommunicationSkillExtractor:
def __init__(self):
self.language_model = pipeline("text-classification",
model="microsoft/DialoGPT-medium")
async def extract_and_score(self, transcript, context):
"""Analyze communication effectiveness."""
analysis = {
'clarity': self.assess_clarity(transcript),
'structure': self.analyze_response_structure(transcript),
'engagement': self.measure_engagement_level(transcript),
'listening_skills': self.evaluate_listening(transcript, context),
'persuasiveness': self.assess_persuasiveness(transcript)
}
# Calculate overall communication score
weights = {
'clarity': 0.3,
'structure': 0.2,
'engagement': 0.2,
'listening_skills': 0.15,
'persuasiveness': 0.15
}
overall_score = sum(
analysis[skill] * weight
for skill, weight in weights.items()
)
return {
'overall_score': overall_score,
'breakdown': analysis
}
def assess_clarity(self, transcript):
"""Measure clarity of communication."""
# Analyze sentence structure, vocabulary complexity, filler words
sentences = self.split_into_sentences(transcript)
clarity_factors = {
'avg_sentence_length': self.calculate_avg_sentence_length(sentences),
'vocabulary_diversity': self.calculate_vocabulary_diversity(transcript),
'filler_word_ratio': self.calculate_filler_ratio(transcript),
'grammatical_correctness': self.assess_grammar(transcript)
}
# Weighted scoring
clarity_score = (
(1 - min(clarity_factors['filler_word_ratio'] / 0.1, 1)) * 0.3 +
min(clarity_factors['vocabulary_diversity'] / 100, 1) * 0.3 +
clarity_factors['grammatical_correctness'] * 0.4
) * 10
return clarity_score
Cultural Fit Analysis
Cultural Alignment Assessment
Copy
class CulturalFitAgent:
def __init__(self):
self.value_analyzer = ValueAlignmentAnalyzer()
self.behavior_predictor = BehaviorPredictionModel()
async def evaluate_fit(self, interview_session):
"""Comprehensive cultural fit evaluation."""
company = interview_session.job.company
candidate_responses = interview_session.get_responses()
# Analyze value alignment
value_scores = await self.value_analyzer.analyze_alignment(
candidate_responses, company.values
)
# Predict cultural behaviors
behavior_prediction = await self.behavior_predictor.predict_fit(
candidate_responses, company.culture_profile
)
# Assess team compatibility
team_fit = await self.assess_team_compatibility(
candidate_responses, company.team_dynamics
)
overall_fit_score = self.calculate_cultural_fit_score(
value_scores, behavior_prediction, team_fit
)
return {
'overall_score': overall_fit_score,
'value_alignment': value_scores,
'behavior_prediction': behavior_prediction,
'team_compatibility': team_fit,
'recommendations': self.generate_fit_recommendations(overall_fit_score)
}
Behavioral Pattern Recognition
Copy
class BehaviorPredictionModel:
def __init__(self):
self.personality_model = pipeline("text-classification",
model="personality-prediction-model")
async def predict_fit(self, responses, culture_profile):
"""Predict cultural fit based on behavioral patterns."""
# Extract personality traits
personality_traits = self.extract_personality_traits(responses)
# Analyze work style preferences
work_style = self.analyze_work_style(responses)
# Assess leadership potential
leadership_style = self.assess_leadership_style(responses)
# Calculate fit with company culture
culture_match = self.calculate_culture_match(
personality_traits, work_style, leadership_style, culture_profile
)
return {
'personality_match': culture_match['personality'],
'work_style_match': culture_match['work_style'],
'leadership_match': culture_match['leadership'],
'overall_prediction': culture_match['overall']
}
Behavioral Analysis System
STAR Method Evaluation
Copy
class STARAnalysisAgent:
def __init__(self):
self.component_detector = STARComponentDetector()
def analyze_star_response(self, response_text, question_context):
"""Analyze response using STAR methodology."""
components = {
'situation': self.component_detector.detect_situation(response_text),
'task': self.component_detector.detect_task(response_text),
'action': self.component_detector.detect_action(response_text),
'result': self.component_detector.detect_result(response_text)
}
# Evaluate completeness and quality
completeness_score = self.calculate_completeness(components)
quality_score = self.assess_quality(components, question_context)
# Generate feedback and follow-up questions
feedback = self.generate_star_feedback(components)
follow_up = self.generate_follow_up_questions(components)
return {
'components': components,
'completeness_score': completeness_score,
'quality_score': quality_score,
'feedback': feedback,
'follow_up': follow_up
}
Body Language and Facial Analysis
Copy
class BodyLanguageAnalyzer:
def __init__(self):
self.face_detector = FaceDetectionModel()
self.emotion_classifier = EmotionClassificationModel()
self.gesture_recognizer = GestureRecognitionModel()
async def analyze_video_stream(self, video_stream):
"""Analyze body language and facial expressions."""
analysis_results = []
async for frame in video_stream:
# Detect faces and extract features
faces = self.face_detector.detect_faces(frame)
for face in faces:
# Analyze facial expressions
emotions = self.emotion_classifier.classify_emotions(face)
# Detect micro-expressions
micro_expressions = self.detect_micro_expressions(face)
# Analyze eye contact and attention
attention_metrics = self.analyze_attention(face)
analysis_results.append({
'timestamp': datetime.now(),
'emotions': emotions,
'micro_expressions': micro_expressions,
'attention': attention_metrics
})
# Aggregate results over time
behavioral_summary = self.aggregate_behavioral_data(analysis_results)
return behavioral_summary
Audio Processing and Analysis
Speech Analysis Engine
Copy
class SpeechAnalysisEngine:
def __init__(self):
self.transcriber = AWS_Transcribe()
self.audio_analyzer = AudioFeatureExtractor()
async def analyze_audio(self, audio_stream):
"""Comprehensive audio analysis."""
# Real-time transcription
transcript = await self.transcriber.transcribe_stream(audio_stream)
# Extract audio features
audio_features = self.audio_analyzer.extract_features(audio_stream)
# Analyze speech patterns
speech_analysis = {
'pace': self.calculate_speech_pace(audio_features),
'tone_variation': self.analyze_tone_variation(audio_features),
'confidence_indicators': self.detect_confidence_in_voice(audio_features),
'filler_words': self.count_filler_words(transcript),
'clarity': self.assess_speech_clarity(audio_features)
}
return {
'transcript': transcript,
'speech_metrics': speech_analysis,
'overall_communication_score': self.calculate_communication_score(speech_analysis)
}
Filler Word Detection
Copy
class FillerWordsAgent:
def __init__(self):
self.filler_patterns = [
'um', 'uh', 'like', 'you know', 'actually', 'basically',
'literally', 'so', 'well', 'I mean', 'kind of', 'sort of'
]
def analyze_filler_usage(self, transcript):
"""Analyze and track filler word usage."""
words = transcript.lower().split()
total_words = len(words)
filler_counts = {}
total_fillers = 0
for filler in self.filler_patterns:
count = transcript.lower().count(filler)
filler_counts[filler] = count
total_fillers += count
filler_ratio = total_fillers / total_words if total_words > 0 else 0
# Generate improvement suggestions
suggestions = self.generate_filler_reduction_tips(filler_counts)
return {
'filler_ratio': filler_ratio,
'filler_breakdown': filler_counts,
'total_fillers': total_fillers,
'total_words': total_words,
'improvement_suggestions': suggestions
}
Learning and Recommendation System
Adaptive Learning Path Generator
Copy
class RecommendationsAgent:
def __init__(self):
self.skill_gap_analyzer = SkillGapAnalyzer()
self.resource_matcher = LearningResourceMatcher()
async def generate_learning_path(self, interview_results):
"""Generate personalized learning recommendations."""
# Identify skill gaps
skill_gaps = self.skill_gap_analyzer.identify_gaps(
interview_results['skill_scores'],
interview_results['job_requirements']
)
# Prioritize gaps based on job importance
prioritized_gaps = self.prioritize_skill_gaps(
skill_gaps, interview_results['job_focus']
)
# Match learning resources
learning_resources = []
for gap in prioritized_gaps:
resources = await self.resource_matcher.find_resources(
skill=gap['skill'],
current_level=gap['current_score'],
target_level=gap['target_score'],
learning_style=interview_results.get('learning_style', 'mixed')
)
learning_resources.extend(resources)
# Create structured learning path
learning_path = self.create_learning_path(learning_resources, prioritized_gaps)
return {
'skill_gaps': prioritized_gaps,
'learning_path': learning_path,
'estimated_time': self.calculate_learning_time(learning_path),
'success_probability': self.predict_success_rate(learning_path, interview_results)
}
Knowledge Gap Analysis
Copy
class KnowledgeGapAnalyzer:
def analyze_knowledge_gaps(self, interview_session):
"""Identify specific knowledge gaps and learning opportunities."""
transcript = interview_session.get_transcript()
job_requirements = interview_session.job.requirements
# Parse technical concepts from job requirements
required_concepts = self.extract_technical_concepts(job_requirements)
# Analyze candidate's knowledge demonstration
demonstrated_knowledge = self.extract_demonstrated_knowledge(transcript)
# Identify gaps
knowledge_gaps = []
for concept in required_concepts:
if concept not in demonstrated_knowledge:
gap_severity = self.assess_gap_severity(concept, job_requirements)
knowledge_gaps.append({
'concept': concept,
'severity': gap_severity,
'learning_resources': self.suggest_learning_resources(concept),
'estimated_learning_time': self.estimate_learning_time(concept)
})
return knowledge_gaps
AI Model Training and Optimization
Continuous Learning System
Copy
class ModelTrainingPipeline:
def __init__(self):
self.model_registry = ModelRegistry()
self.data_collector = TrainingDataCollector()
async def retrain_models(self):
"""Continuously improve AI models with new data."""
# Collect new training data
training_data = await self.data_collector.collect_recent_data()
# Validate data quality
validated_data = self.validate_training_data(training_data)
# Retrain models
for model_name, model in self.model_registry.get_models():
if self.should_retrain(model, validated_data):
new_model = await self.retrain_model(model, validated_data)
# Validate model performance
if self.validate_model_performance(new_model, model):
self.model_registry.update_model(model_name, new_model)
def validate_model_performance(self, new_model, current_model):
"""Validate that new model performs better than current."""
test_data = self.get_test_dataset()
new_accuracy = self.calculate_accuracy(new_model, test_data)
current_accuracy = self.calculate_accuracy(current_model, test_data)
return new_accuracy > current_accuracy * 1.02 # 2% improvement threshold
A/B Testing Framework
Copy
class SentimentExperimentManager:
def __init__(self):
self.control_model = StandardSentimentModel()
self.treatment_model = EnhancedSentimentModel()
def assign_experiment_group(self, interview_session):
"""Assign interview to control or treatment group."""
# Deterministic assignment based on session ID
group = 'treatment' if hash(interview_session.session_id) % 2 == 0 else 'control'
return group
async def run_experiment(self, interview_session):
"""Run A/B test comparing sentiment models."""
group = self.assign_experiment_group(interview_session)
if group == 'treatment':
sentiment_score = await self.treatment_model.analyze(interview_session)
else:
sentiment_score = await self.control_model.analyze(interview_session)
# Record experiment results
SentimentExperiment.record_experiment(
interview_session=interview_session,
experiment_group=group,
sentiment_score=sentiment_score
)
return sentiment_score
Performance Optimization
AI Processing Pipeline Optimization
Copy
class AIPerformanceOptimizer:
def __init__(self):
self.cache = RedisCache()
self.async_processor = AsyncProcessor()
async def optimize_processing(self, interview_session):
"""Optimize AI processing for speed and accuracy."""
# Check cache for similar interviews
cache_key = self.generate_cache_key(interview_session)
cached_result = await self.cache.get(cache_key)
if cached_result and self.is_cache_valid(cached_result):
return cached_result
# Process with optimized pipeline
results = await self.process_with_pipeline(interview_session)
# Cache results for future use
await self.cache.set(cache_key, results, ttl=3600)
return results
async def process_with_pipeline(self, interview_session):
"""Process interview through optimized AI pipeline."""
# Parallel processing of independent analyses
sentiment_task = self.async_processor.submit(
self.sentiment_agent.analyze, interview_session
)
skill_task = self.async_processor.submit(
self.skill_agent.assess, interview_session
)
cultural_task = self.async_processor.submit(
self.cultural_agent.evaluate, interview_session
)
# Wait for all tasks to complete
sentiment_result = await sentiment_task
skill_result = await skill_task
cultural_result = await cultural_task
# Aggregate results
return self.aggregate_results([sentiment_result, skill_result, cultural_result])
Error Handling and Fallbacks
Robust AI System Design
Copy
class AIErrorHandler:
def __init__(self):
self.fallback_models = {
'sentiment': BasicSentimentModel(),
'skills': RuleBasedSkillExtractor(),
'cultural_fit': SimpleCompatibilityMatcher()
}
async def safe_ai_processing(self, interview_session):
"""Process interview with error handling and fallbacks."""
results = {}
for component, agent in self.ai_agents.items():
try:
result = await agent.process(interview_session)
results[component] = result
except AIProcessingError as e:
logger.warning(f"AI component {component} failed: {e}")
# Use fallback model
fallback_agent = self.fallback_models.get(component)
if fallback_agent:
result = await fallback_agent.process(interview_session)
results[component] = result
results[f'{component}_fallback_used'] = True
else:
results[component] = self.get_default_result(component)
except Exception as e:
logger.error(f"Unexpected error in {component}: {e}")
results[component] = self.get_default_result(component)
return results
Monitoring and Analytics
AI Performance Monitoring
Copy
class AIMonitoringSystem:
def __init__(self):
self.metrics_collector = MetricsCollector()
def track_ai_performance(self, component, processing_time, accuracy_score):
"""Track AI component performance metrics."""
self.metrics_collector.record_metric(
metric_name=f'ai.{component}.processing_time',
value=processing_time,
tags=['component:' + component]
)
self.metrics_collector.record_metric(
metric_name=f'ai.{component}.accuracy',
value=accuracy_score,
tags=['component:' + component]
)
def generate_ai_health_report(self):
"""Generate comprehensive AI system health report."""
return {
'component_health': self.check_component_health(),
'performance_metrics': self.get_performance_metrics(),
'error_rates': self.calculate_error_rates(),
'recommendations': self.generate_optimization_recommendations()
}
